Polymer particle-based micromolding to fabricate novel microstructures.

نویسندگان

  • Jung-Hwan Park
  • Seong-O Choi
  • Rachna Kamath
  • Yong-Kyu Yoon
  • Mark G Allen
  • Mark R Prausnitz
چکیده

Conventional micromolding provides rapid and low-cost methods to fabricate polymer microstructures, but has limitations when producing sophisticated designs. To provide more versatile micromolding techniques, we developed methods based on filling micromolds with polymer microparticles, as opposed to polymer melts, to produce microstructures composed of multiple materials, having complex geometries, and made using mild processing conditions. Polymer microparticles of 1 to 30 microm in size were made from PLA, PGA and PLGA using established spray drying and emulsion techniques either with or without encapsulating model drug compounds. These polymer microparticles were filled into PDMS micromolds at room temperature and melted or bonded together to form microstructures according to different protocols. Porous microstructures were fabricated by ultrasonically welding microparticles together in the mold while maintaining the voids inherent in their packing structure. Multi-layered microstructures were fabricated to have different compositions of polymers and encapsulated compounds located in different regions of the microstructures. More complex arrowhead microstructures were fabricated in a two-step process using a single mold. To assess possible applications, microstructures were designed as microneedles for minimally invasive drug delivery. Multi-layer microneedles were shown to insert into cadaver tissue and, according to design, detach from their base substrate and remain embedded in the tissue for controlled release drug delivery over time. We conclude that polymer particle-based micromolding can encapsulate compounds within microstructures composed of multiple materials, having complex geometries, and made using mild processing conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of Suspended Polymer Microstructures Using Sacrificial Layer Micromolding and Patterned Substrate Micromolding

Two soft lithography based fabrication techniques were employed for fabricating mechanically independent, freely suspended polymer microstructure from poly(n-propyl methacrylate) (PPMA) and poly(methyl methacrylate) (PMMA). Both methods involve a micromolding process followed by thermal bonding to the substrate. The first method, sacrificial layer micromolding, uses a water-soluble sacrificial ...

متن کامل

Responsive micromolds for sequential patterning of hydrogel microstructures.

Microscale hydrogels have been shown to be beneficial for various applications such as tissue engineering and drug delivery. A key aspect in these applications is the spatial organization of biological entities or chemical compounds within hydrogel microstructures. For this purpose, sequentially patterned microgels can be used to spatially organize either living materials to mimic biological co...

متن کامل

Micromolding in Capillaries: Applications in Materials Science

Procedures based on micromolding in capillaries (MIMIC) were used to pattern a surface of a substrate with micrometerand submicrometer-scale structures. An elastomeric stamp made of poly(dimethylsiloxane) and having relief features in its surface was placed on a substrate; contact between the elastomeric stamp and the substrate formed a network of interconnected channels. A fluidsa precursor to...

متن کامل

Patterning polymer light-emitting diodes by micromolding in capillary

Here we describe a method of patterning electroluminescent (EL) polymers using micromolding in capillary (MIMIC). MIMIC is the one of the lithographic methods based on the microfludics among the soft lithography using a patterned poly(dimethylsiloxane) (PDMS) elastomer. The patterned microstructures of poly(dioctylfluorene) (PDOF), poly(p-phenylenevinylene) (PPV), and poly(2methoxy-5-2 0-ethylh...

متن کامل

Force output, control of film structure, and microscale shape transfer by carbon nanotube growth under mechanical pressure.

We demonstrate that a film of vertically aligned multiwall carbon nanotubes (CNTs) can exert mechanical energy as it grows, and in our experiments the average force output is approximately 0.16 nN per CNT, for CNTs having an outer diameter of 9 nm and five walls. The film thickness after a fixed growth time and the alignment of CNTs within the film decrease concomitantly with increasing pressur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomedical microdevices

دوره 9 2  شماره 

صفحات  -

تاریخ انتشار 2007